The Luminosity Function of the Milky Way Satellites
نویسندگان
چکیده
We quantify the algorithmic detectability of stellar Milky Way satellites in data release 5 (DR5) of the Sloan Digital Sky Survey (SDSS), and use this to estimate the luminosity function of faint satellite galaxies in our halo. We develop a satellite detection algorithm based on the convolution of the DR5 star catalog with a kernel of zero net flux that is the difference of a narrow positive Gaussian and a much wider negative Gaussian, which removes the background star-count level. This permits us to assess the significance of any (positive) detection in terms of deviations of this map. The efficiency of this algorithm is tested by computing the recovery rate of a large set of mock objects added to SDSS DR5 as a function of their luminosity, size and distance from the Sun. Most of the recent Milky Way satellite discoveries, made by SDSS, are shown to lie very close to the survey’s detection limits. Calculating the maximum accessible volume Vmax for all faint detected objects makes it possible for the first time to calculate the luminosity function for the Milky Way satellite galaxies, accounting consistently and algorithmically for their detection biases. The number density of satellite galaxies continues to rise towards low luminosities, but may flatten at MV ∼ −5. Within the uncertainties the luminosity function can be described by a simple power law dN/dMV = 10 × 10V , spanning luminosities from MV = −2.5 all the way to the bright end. Comparing these results to several galaxy formation models, we find the predicted properties differ from the data. Either the shape of the luminosity function, or the surface brightness distributions of the models do not match. Subject headings: Galaxy: halo – Galaxy: structure – Galaxy: formation – Local Group
منابع مشابه
Hundreds of Milky Way satellites? Luminosity bias in the satellite luminosity function
We correct the observed Milky Way satellite luminosity function for luminosity bias using published completeness limits for the Sloan Digital Sky Survey DR5. Assuming that the spatial distribution of Milky Way satellites tracks the subhalos found in the Via Lactea ΛCDM N-body simulation, we show that there should be between ∼ 300 and ∼ 600 satellites within 400 kpc of the Sun that are brighter ...
متن کاملOn the nature of the Milky Way satellites
We combine a series of high-resolution simulations with semi-analytic galaxy formation models to follow the evolution of a system resembling the Milky Way and its satellites. The semianalytic model is based on that developed for the Millennium Simulation, and successfully reproduces the properties of galaxies on large scales, as well as those of the Milky Way. In this model, we are able to repr...
متن کاملModeling the Milky-Way Satellite galaxies
We revisit the Milky Way satellite problem using a semi-analytical model of galaxy formation and compare the predicted luminosity function to recent result from the SDSS. With cosmic photoionization, the luminosity function can be brought into broad agreement with the data between −15 < MV < −2. This improvement over previous semi-analytical model results (e.g., Benson et al. 2002) is from our ...
متن کاملThe origin of failed subhaloes and the common mass scale of the Milky Way satellite galaxies
We study the formation histories and present-day structure of satellite galaxies formed in a high resolution hydrodynamic simulation of a Milky Way-like galaxy. The simulated satellites span nearly 4 orders of magnitude in luminosity but have a very similar mass within their inner 600 pc, ∼ 3×10 M⊙, with very little scatter. This result is in agreement with the recent measurements for dwarf sph...
متن کاملRedefining the Missing Satellites Problem
Numerical simulations of Milky-Way size Cold Dark Matter (CDM) halos predict a steeply rising mass function of small dark matter subhalos and a substructure count that greatly outnumbers the observed satellites of the Milky Way. Several proposed explanations exist, but detailed comparison between theory and observation in terms of the maximum circular velocity (Vmax) of the subhalos is hampered...
متن کامل